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Summary. A formalism has been developed that describes spin crossover equilibrium in the solid state

by taking into account the effects of n nearest neighbours of a given molecule on its partition function.

In this way binary and many-body interactions of the order nþ 1 are included into the theoretical

model and represented by non-ideality parameters connected with the splitting of free energy levels.

Binary interactions are characterised by the main splittings whereas higher order interactions manifest

themselves in asymmetries of splittings within multiplets. The contribution of molecular interactions

can also be written in terms of formal excess free energies of the second, third, fourth and higher

orders. Simple relationships between excess free energies and parameters of multiplets have been

found for binary, ternary and quaternary interactions. This formalism is reduced to that of the model of

binary interactions when effects of surroundings are additive leading to equidistant free energy multi-

plets. Higher order interactions may cause an abrupt spin crossover but in a limited range of composi-

tions around the transition point. The regression of experimental transition curves of one-step spin

crossover may yield estimates of excess energies up to the fifth order.
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Introduction

The phenomenon of spin crossover observed in some complexes of transition
metals continues to attract considerable interest (see recent reviews [1–6]). Spin
crossover is a unique homogeneous equilibrium between HS and LS complexes of
Fe2þ and some other ions occurring in the solid state and showing a variety of
effects (abrupt spin crossover, two-step spin crossover) originating from molecular
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interactions. Spin crossover occurs at low temperatures making the approximation
of ideal crystal a good starting point for a more complicated model. Spin crossover
is thus a perfect test-system for general theoretical descriptions of chemical equi-
libria in the solid state. On the other hand, purely practical problems of the synthe-
sis of promising spin crossover compounds (molecular magnets) require a theory
connecting the sharpness of transitions with molecular parameters predictable for
model structures.

Dominating theoretical models of spin crossover (see also Ref. [5]) operate
either with macroscopic empirical parameters or with microscopic parameters re-
lated to sublattices rather than to molecules. They can be divided into two groups:
models of effective Hamiltonian and thermodynamic models. Models of the first
type are usually based on the Ising-like Hamiltonian suggested by Wajnflasc and
Pick [7] and further developed by Bari and Sivardiere [8], Zelentsov et al. [9], and
Varret et al. [10]. The main variable of this model is the fictitious spin from which
the composition of system is derived. The main parameter of this formalism is the
interaction constant J (different from the exchange constant). This model gives a
correct semi-quantitative description of all known types of spin crossover including
the two-step spin crossover.

Thermodynamic models consider spin crossover as a chemical equilibrium
between LS (A) and HS (B) isomers (Eq. (1)).

AðLSÞ) �������*BðHSÞ ð1Þ
A formal thermodynamic description of gradual and abrupt spin crossover has

been given by Slichter and Drickamer [11] in 1972 employing the model of regular
solutions. The sharpness of transition in this model is characterised by the excess
energy of mixing (�EE) also termed as cooperativity. This model predicts the
abrupt spin crossover as a result of strong homo-molecular interactions leading
to the formation of HS-rich and LS-rich phases manifested by peaks of heat capac-
ity [4] and accompanied by a hysteresis loop. However this model fails to predict
the two-step spin crossover.

The domain model, suggested 1974 by Sorai and Seki [12], assumes ‘that a
crystal lattice consists of non-interacting domains with uniform size containing n
complexes and that the spin state conversion in each domain takes place simulta-
neously’ [4]. The domain model can be advantageously applied to cases of very
sharp (abrupt) transitions accompanied by a narrow hysteresis loop, however this
model does not directly predict the hysteresis, neither does it predict the two-step
spin crossover.

The model of elastic interactions originally suggested by Ohnishi and Sugano
[13] and developed by G€uutlich, Spiering et al. [14–18] explains the cooperativity in
terms of ‘elastic interaction between HS and LS molecules via the image pressure’
[14]. In this model a crystal is represented as an elastic isotropic medium in which
metal complexes considered as incompressible spheres are embedded. According to
Ref. [16] this model quantitatively predicts cooperativity as well as the energy dif-
ference between HS and LS states on the basis of experimental data on elastic con-
stants, volumetric and thermal properties obtained in a wide temperature range [15].

Another approach is to employ the potential of elastic interactions in Monte-
Carlo simulations of transition curves [18]. A good coincidence of experimental
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and simulated curves has been achieved employing a combination of the long-
range elastic potential with terms reflecting short-range (on molecular scale) inter-
actions [18]. It must however be mentioned that a macroscopically long-range
potential itself arises from the short-range molecular forces (see e.g. Ref. [19]).
Furthermore the range of lattice relaxation is limited to tens of lattice constants
therefore elastic forces are not macroscopically long-range.

Quantum chemical calculations provide for the evaluation of electronic
energies and vibrational frequencies in model structures representing isolated
molecules of spin crossover complexes [20–23]. It has been found [22] that
Hartree-Fock calculations overestimate the energy gap between HS and LS states
leading to the stabilisation of HS species, whereas the DFT calculations show the
opposite trend. Apparently the hybrid methods [22] provide for a correct estimation
of �E0 and �S0 of spin crossover in model structures. The effect of solvent has
been studied in the approximation of polarisable continuum [23].

The development of a molecular theory of spin crossover in the solid state is
of importance not only for the general theory of condensed state but also for
chemical practice. It is desirable to have a possibility to estimate the sharpness
of transition (i.e. the sign and magnitude of the excess energy) for a model struc-
ture employing simple molecular parameters, such as interatomic distances, bond
angles, electric dipole moments, etc. It is well known that the representation of
thermodynamic functions in terms of molecular parameters is possible within a
statistical mechanic formalism. This has been done in the approximation of ideal
crystal by considering vibrational contributions towards standard free energy of
spin crossover [23, 24]. The approximation of ideal crystal explains several effects
in magnetically diluted solid solutions of spin crossover compounds, among them
a specific nonlinearity of van’t Hoff plots [2] in diluted systems. However the
abrupt spin crossover cannot be explained within the approximations of ideal
crystal.

Some years ago we have suggested a statistical thermodynamic model that
provided for the quantitative parameterisation of the two-step spin crossover
curves in [Fe(2-pic)3]Cl2C2H5OH and some other compounds [25–28]. Mole-
cular interactions have been introduced as the effects of two nearest neighbours
on the partition function of the central molecule. Neighbouring molecules
change the potential energy of a given molecule by distorting the potential
cavity in which this molecule resides; distortions of crystal field also quench
orbital degeneracy. Both the energy and entropy components of the partition
function of a molecule are thus affected. Depending on the actual composition
of the environment the state of the molecule A in an equilibrium mixture of
A (LS) and B (HS) isomers can be characterised by three free energies: FAAA,
FBAA, and FBAB. Similarly the free energy of the molecule B can have the
values: FBBB, FBBA, and FABA. Molecular interaction thus splits the levels of
molecules A and B into triplets (Fig. 1). The fundamental simplifying assump-
tion of this model is the pseudo-independence of molecules and motions along
spatial coordinates. Molecular interactions are supposed to change parameters
of the partition function without causing a correlated behaviour of molecules.
This allows one to sum free energy over molecules. Summing free energy over the
coordinates is allowed when motions and interactions along the coordinates are
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uncorrelated. To a first approximation these assumptions are valid in systems of
weakly interacting moleculesa. The chain of reasoning when deriving the basic
equation of this model is important and will be reiterated below in a concise
form.

Under the conditions specified above by summing the free energy for each
type of molecules over all surroundings and coordinates one obtains Eqs. (2)
and (3).

FA ¼ x2
AFAAA þ 2xAxBFAAB þ x2

BFBAB ð2Þ

FB ¼ x2
BFBBB þ 2xAxBFBBA þ x2

AFABA ð3Þ

The free energy of a mixture of two kinds of pseudo-independent molecules is
pseudo-additive and contains a contribution from the mixing entropy (Eq. (4)).

F ¼ xAFA þ xBFB þ NkTðxA ln xA þ xB ln xBÞ ð4Þ
Combining Eqs. (2), (3), and (4) and substituting xB¼ 1� xA, one obtains [25] the
free energy as shown by Eq. (5) in which DA, DB, yA, and yB are given by Eqs. (5a)
and (5b).

F ¼ x3
A½ð1 � 2yAÞDA � ð1 � 2yBÞDB� þ x2

A½ð1 � 4yBÞDB � 2ð1 � yAÞDA�
þ xAðDA þ 2yBDB � FBBB þ FAAAÞ þ FBBB

þ NkT ½xA ln xA þ ð1 � xAÞ lnð1 � xAÞ� ð5Þ

DA ¼ FBAB � FAAA; DB ¼ FABA � FBBB ð5aÞ

yA ¼ FAAB � FAAA

DA

; yB ¼ FABB � FBBB

DB

ð5bÞ

Fig. 1. Free energy level diagram showing the effects of two neighbours on the partition function of

central molecule

a Cases of strong interactions leading to correlations of spin states of complexes in neighbouring

lattice centres can be described by a quasi chemical model [27]
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The difference FBBB �FAAA in the term linear with respect to xA, represents
the standard free energy of reaction in the state of pure compounds. The main
splittings of free energy levels DA and DB characterise the effects of a complete
change of environment from homo-molecular into hetero-molecular. The relative
asymmetries of splittings yA and yB characterise the efficiency of the first sub-
stitution in the homo-molecular environment. The last four parameters appear as
a result of molecular interactions and are therefore the non-ideality parameters of
the considered system. The term in Eq. (5) proportional to xA

3 apparently arises
from triple interactions whereas that proportional to xA

2 originates from binary
interactions.

When spacings between sublevels in triplets (Fig. 1) are equal, i.e. when
yA¼yB¼ 1=2, the formalism is reduced to that of the model of binary interactions
with a single non-ideality parameter, the excess free energy �FE¼DAþDB. In the
approximation of zero excess entropy this reduced formalism becomes equivalent
to that of the theory of regular solutions.

The phenomenon of ordering plays an important role in spin crossover in the
solid state: it brings about the two-step spin crossover. Treating ordering in the
Bragg-Williams approximation we have derived [25] equations providing for
the simulation of two-step transition curves. Correct descriptions can be achieved
when two equations are used for two regions of compositions 0<xB<1=2 and
1=2<xB<1.0, Eq. (6) for xA<1=2, in which u1A¼ (1þ s)xA, u2A¼ (1� s)xA,
and s is the degree of order of the Bragg-Williams model, and Eq. (7) for xB<1=2,
in which u1B¼ (1þ s)xB, and u2B¼ (1� s)xB.

F ¼ x3
Að1 � s2Þ½ð1 � 2yAÞDA � ð1 � 2yBÞDB�

þ x2
A½ð1 � 4yBÞDB � 2ð1 � yAÞDA þ s2ðDB þ 2ð1 � yAÞDAÞ�

þ xAðDA þ 2yBDBÞ þ xAFAAA þ ð1 � xAÞFBBB þ NkT

2
½u1A lnðu1AÞ

þ ð1 � u1AÞ lnð1 � u1AÞ þ u2A lnðu2AÞ þ ð1 � u2AÞ lnð1 � u2AÞ� ð6Þ

F ¼ x3
Bð1 � s2Þ½ð1 � 2yBÞDB � ð1 � 2yAÞDA�

þ x2
B½ð1 � 4yAÞDA � 2ð1 � yBÞDB þ s2ðDA þ 2ð1 � yBÞDBÞ�

þ xBðDB þ 2yADAÞ þ ð1 � xBÞFAAA þ xBFBBB þ NkT

2
½u1B lnðu1BÞ

þ u2B lnðu2BÞ þ ð1 � u1BÞ lnð1 � u1BÞ þ ð1 � u2BÞ lnð1 � u2BÞ� ð7Þ

Theoretical transition curves are obtained as solutions of conditions of thermo-
dynamic equilibrium with respect to the composition and the degree of order:
@F=@x¼ 0, @F=@s¼ 0 (see Refs. [25], [26] and Methods). It has been found
[25] that the plateau on two-step transition curves is connected with a peak of
the degree of order appearing in systems with large negative excess energies
j�EEj>2RT1=2. The approximation of binary interactions (yA¼yB¼ 1=2) only
predicts general features of the two-step spin crossover, whereas adequate descrip-
tions of experimental transition curves could only be obtained in the approximation
of triple interactions (yA 6¼yB 6¼ 1=2).
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Although this model provided for a quantitatively adequate description of
a wide variety of experimental transition curves [25–27] it suffers form several
deficiencies.

* All four non-ideality parameters enter the terms arising from both binary and
triple interactions. Although it has been deduced that main splittings characterise
binary interactions the coefficients yA and yB do not represent directly the con-
tribution of triple interactions.

* Taking into account the effects of only two neighbours of a given molecule
makes this model limited to 1D structures or to systems with completely inde-
pendent motions along coordinates. This might be considered as a too rough
simplification.

* Non-ideality parameters in this model are formal adjustable parameters not
related to the strength and type of molecular forces. Although their relationship
to actual molecular potentials has been established in some special cases [26] the
parameterisation of transition curves in terms of molecular potentials has not
been explored.

The aim of this paper is to remove these deficiencies. Part I of this paper
presents the derivation of equations with parameters directly related to binary
and triple interactions. Then the case of a molecule interacting with an arbitrary
number of nearest neighbours will be considered yielding a formalism taking into
account many-centre interactions of (nþ 1)-th order. Part II is dedicated to the
representation of non-ideality parameters via binary molecular potentials.

Results and Discussion

Parameters Directly Representing Triple Interactions

The effects of binary and triple interactions can be separated by substituting yA and
yB in Eq. (5) as shown by Eq. (8).

�A
1 ¼ �ð1 � 2yAÞDA; �B

1 ¼ �ð1 � 2yBÞDB ð8Þ
Returning to two variables of composition (xA, xB) one obtains Eq. (9).

F ¼ xAxB

�
xA�

A
1 þ xB�

B
1 þ DA þ DB

�
þ xAFAAA þ xBFBBB

þ NkT
�
xA ln xA þ xB ln xB

�
ð9Þ

Figure 2 illustrates the physical significance of newly introduced parameters
�A

1 and �B
1 : they are absolute asymmetries of splittings of free energy levels of

molecules A and B. The meaning of the index 1 will be clarified in the next section.

Fig. 2. Physical significance of the parameter �A
1
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Equation (9) directly shows that main splittings, DA and DB, represent the con-
tribution of binary interactions: xAxB(DAþDB), whereas the asymmetries �A

1 and
�B

1 characterise triple interactions: xAxB(xA�
A
1 þ xB�

B
1 Þ. The term xAxBxA�

A
1

can be interpreted as reflecting the effect of a B-molecule on the interaction in a
neighbouring AA-pair or as the effect of an A-molecule on the AB-interaction.
Similarly, the term xAxBxB�

B
1 reflects the effect of an A-molecule on the BB-

interactions and=or the effect of a B-molecule on the AB-interaction.
If parameters �A and �B are statistically independent then a regression of

experimental data according to Eq. (9) cannot yield separate estimates of DA and
DB; only the excess free energy �FE¼DAþDB can be estimated. Initially [25] it
was assumed that the asymmetries �A and �B are bound to corresponding main
splittings DA and DB by Eq. (8). This allows one to estimate DA and DB separately
(at non-zero �A and �B). The bounds (Eq. (8)) can thus be considered as a kind of
regularisation of an essentially overparameterised theoretical model. In the absence
of such bounds Eq. (9) virtually contains only two independent non-ideality para-
meters: �E(2)¼DAþDBþ�B

1 and �E(3)¼�A
1 ��B

1 (Eq. (10)).

F ¼ xAðFAAA � FBBBÞ þ FBBB þ NkTðxA ln xA þ xB ln xBÞ
þ ð1 � xAÞxA½xAð�A

1 ��B
1 Þ þ�B þ DA þ DB� ð10Þ

Equations (6) and (7) can be written in terms of the excess free energy
�FE¼DAþDB, and asymmetries �A

1 and �B
1 as Eqs. (11) and (12).

F ¼ xAxBð1 � s2ÞðxA�
A
1 þ xB�

B
1 þ�FEÞ þ s2xA½�FE þ�B

1 ð1 � 2xAÞ�

þ xAFAAA þ xBFBBB þ NkT

2
½u1A lnðu1AÞ þ ð1 � u1AÞ lnð1 � u1AÞ

þ u2A lnðu2AÞ þ ð1 � u2AÞ lnð1 � u2AÞ� ð11Þ

F ¼ xAxBð1 � s2Þ
�
xA�

A
1 þ xB�

B
1 þ�FE

�
þ s2xB½�FE þ�A

1 ð1 � 2xBÞ�

þ xAFAAA þ xBFBBB þ NkT

2
½u1B lnðu1BÞ þ ð1 � u1BÞ lnð1 � u1BÞ

þ u2B lnðu2BÞ þ ð1 � u2BÞ lnð1 � u2BÞ� ð12Þ

At non-zero s Eqs. (11) and (12) contain three parameters �FE¼DAþDB, �A
1 ,

and �B
1 . Ordering thus improves the resolving power of the regression.

The regression employing (i) coefficients yA(B) and (ii) absolute asymmetries
�

AðBÞ
1 is thus not completely equivalent: the former implicitly uses the regularisation

bound (Eq. (8)) which allows one to estimate DA and DB separately. However the
experimental transition curve of the two-step spin crossover in [Fe(2-pic)3]Cl2EtOH
(data from Ref. [10]) can be approximated by Eqs. (6) and (7) and Eqs. (11) and (12)
with equal regression errors (�yx in the first two rows of Table 1). Theoretical
transition curves obtained for these two cases are visibly indistinguishable but the
optimisation in terms of �EE, �A

1 , and �B
1 converges faster than that in terms of DA,

DB, yA, and yB, apparently, due to the smaller number of adjustable parameters.
Equations (11) and (12) admit a special mode of regression, viz. that employing

�A
1 ¼�B

1 . In this case terms proportional to xA
3 and xB

3 vanish but parameters
arising from triple interactions (asymmetries) remain. It is therefore a special kind
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of the model of binary interactions. The regression in this mode yields a poorer
description (Fig. 3A, third row in Table 1) than the regression with independent
�A

1 and �B
1 , but comparable to that of the model of the Ising-like Hamiltonian

(Fig. 3B, �yx¼ 0.026 according to the data read from the graph in Ref. [10]). When
�A

1 6¼ �B
1 triple interactions affect the shape of the transition curve not only within

the region of non-zero degrees of order but also beyond it. This apparently is the
cause of the better description of experimental data by the model of triple inter-
actions compared to that given by the model of the Ising-like Hamiltonian.

Many-body Interactions of an Arbitrary Order

The effects of an arbitrary number n of neighbours of a given molecule can be
derived in a similar way. Depending on the composition of the nearest surroundings
the state of the central molecule can be characterised by nþ 1 values of free energy

Table 1. Approximation of experimental data [10] on spin crossover in [Fe(2-pic)3]Cl2EtOH by Eqs. (6) and (7)

(first row), and Eqs. (11) and (12) (second row); third row contains estimates of parameters of Eqs. (11) and (12)

obtained under the condition �A
1 ¼ �B

1 ; note that these estimates have been obtained using temperature as the

independent variable whereas in Ref. [25] similar data have been analysed using the composition as the inde-

pendent variable

�yx�102
�E0

kJ=mol

T1=2

K

DA

kJ=mol

DB

kJ=mol

yA yB �EE

kJ=mol

�A
1

kJ=mol

�B
1

kJ=mol

1.9 7.29 116.4 1.70 �2.15 0.999 0.047 �0.44 1.70 1.945

�0.08 �0.2 �0.01 �0.01 �0.006 �0.007 �0.02 �0.02 �0.031

1.9 6.90 116.1 �0.40 1.69 2.022

�0.22 �0.2 �0.01 �0.02 �0.016

2.9 8.99 117.1 �0.54 1.76 1.759

�0.48 �0.2 �0.02 �0.05 �0.048

Fig. 3. Two-step spin crossover in [Fe(2-pic)3]Cl2EtOH parameterised by the model of triple

interaction with �A
1 ¼ �B

1 (A, third row in Table 1) and by the model of Ref. [10] of the Ising-like

Hamiltonian (B)
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FA
An�iBi

, with i varying from zero to n. Molecular interactions thus split the level of
free energy of a molecule into a multiplet of the order nþ 1 (Fig. 4). This model
also implies the pseudo-independence of molecules and is thus applicable to sys-
tems with weak interactions. The probability to find a molecule surrounded by
An� iBi then equals the product of mol fractions to the proper powers multiplied
by the binomial coefficient Cn

i reflecting the number of ways in which this sur-
rounding can be realised (Eq. (13)).

pAn�iBi
¼ Cn

i x
n�i
A xiB; Cn

i ¼
n!

i!ðn� iÞ! ð13Þ

Free energies of molecules A and B can be represented as weighted averages
over all surroundings (Eq. (14)) in which F

AðBÞ
An�iBi

are free energies of molecules
A(B), surrounded by (n� i) molecules A and i molecules B.

FA ¼
Xn
i¼0

Cn
i x

n�i
A xiBF

A
An�iBi

; FB ¼
Xn
i¼0

Cn
i x

n�i
A xiBF

B
An�iBi

ð14Þ

Separating free energies in the states of pure compounds (FA
An

and FB
Bn

) one
obtains Eqs. (15) and (16) in which J

AðBÞ
k are the spacings between k-th and (kþ 1)-

th sublevels in multiplets (Fig. 4).

FA ¼ FA
An

þ
Xn
i¼1

Cn
i x

n�i
A xiB FA

An�iBi
� FA

An

� �
¼ FA

An
þ
Xn
i¼1

Cn
i x

n�i
A xiB

Xi
k¼1

JA
k ð15Þ

FB ¼ FB
Bn

þ
Xn�1

i¼0

Cn
i x

n�i
A xiB

Xn�i

k¼1

JB
k ¼ FB

Bn
þ
Xn
i¼1

Cn
i�1x

n�iþ1
A xi�1

B

Xn�iþ1

k¼1

JB
k ð16Þ

Fig. 4. Free energy level diagram illustrating the effects of n molecules on the partition function of

central molecule
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The free energy of a mixture of pseudo-independent molecules is pseudo-additive
and contains a contribution from the entropy of mixing (Eq. (17)).

F ¼ xAF
A þ xBF

B þ NkT xA ln xA þ xB ln xBð Þ ð17Þ
Substituting FA and FB according to Eqs. (15) and (16) one obtains Eq. (18).

F ¼ xAF
A
An

þ xBF
B
Bn

þ xAxB

Xn
i¼1

xn�i
A xi�1

B Cn
i

Xi
k¼1

JA
k þ Cn

i�1

Xn�iþ1

k¼1

JB
k

 !

þ NkT xA ln xA þ xB ln xBð Þ ð18Þ
Free energy is thus an additive property with respect to FA

An
and FB

Bn
plus an

excess term proportional to xAxB (Eq. (19)).

F ¼ xAF
A
An

þ xBF
B
Bn

þ xAxB�FE þ NkT xA ln xA þ xB ln xBð Þ ð19Þ
The coefficient of the excess term (the excess free energy) is a polynomial

function of the composition shown by Eq. (19a).

�FE ¼
Xn
i¼1

xn�i
A xi�1

B Cn
i

Xi
k¼1

JA
k þ Cn

i�1

Xn�iþ1

k¼1

JB
k

 !
ð19aÞ

Separating in Eq. (19a) the term corresponding to i¼ 1 one obtains another
polynomial multiplied by xAxB (Eq. (19b)).

�FE ¼ xn�1
A

�
Cn

1J
A
1 þCn

0

Xn
k¼1

JB
k

�
þ xAxB

Xn
i¼2

xn�i�1
A xi�2

B

�
Cn
i

Xi
k¼1

JA
k þCn

i�1

Xn�iþ1

k¼1

JB
k

�

ð19bÞ
This operation can be repeated as long as there are terms with powers of xA and

xB higher 1. This allows one to write the equation for free energy in a versatile
form. Let us consider it in several examples. An earlier developed model of triple
interactions corresponds to n¼ 2 (Eq. (20)).

�FE ¼ xA

�
2JA

1 þ
X2

k¼1

JB
k

�
þ xB

�X2

k¼1

JA
k þ 2JB

1

�
ð20Þ

Noticing that the sum of all Jk
AðBÞ equals the main splitting DA(B) (Eq. (21)) we get

�FE as shown by Eq. (22) or as a function of one variable (Eq. (23)).Xn
k¼1

JA
k ¼ DA;

Xn
k¼1

JB
k ¼ DB; ð21Þ

�FE ¼ xAð2JA
1 þ DBÞ þ xBðDA þ 2JB

1 Þ ð22Þ

�FE ¼ xA

��
2JA

1 � DA

�
�
�
2JB

1 � DB

��
þ DA þ 2JB

1 ð23Þ
From Eq. (23) it directly follows that when 2JA

1 ¼DA and 2JB
1 ¼DB, (equal

spacings between sublevels in a triplet) the coefficient of xA is zero and the excess
free energy is independent of the composition. In this case the equation for free
energy (Eq. (18)) only contains one excess term (xAxB(DAþDB)), reflecting the
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effect of binary interactions. The contribution of triple interactions can thus be
characterised by absolute asymmetries (Eq. (24)).

�A
1 ¼ 2JA

1 � DA; �B
1 ¼ 2JB

1 � DB ð24Þ
Adding and subtracting DB to the right-hand part of Eq. (23) one obtains

Eq. (24a).

�FE ¼ xA�
A
1 þ xB�

B
1 þ DA þ DB ð24aÞ

Free energy of such systems can then be represented as shown by Eq. (24b).

F ¼ xAF
A
An

þ xBF
B
Bn

þ xAxB

�
xA

�
�A

1 ��B
1

�
þ�A

1 þ DA þ DB

�
þ NkT

�
xA ln xA þ xB ln xB

�
ð24bÞ

The excess free energy is independent of the composition when the effects of
triple interactions are either zero (�A

1 ¼ 0, �B
1 ¼ 0) or compensate each other being

equal for molecules A and B (�A
1 ¼�B

1 ). In the latter case the system formally
follows the model of binary interactions but the excess free energy contains a
contribution from triple interactions (Eq. (25)).

�Fð2Þ ¼ DA þ DB þ�A
1 ð25Þ

The coefficient of xA in square brackets in Eq. (24b), �A
1 ��B

1 , can be
termed as the excess free energy of the third order �F(3) (Eq. (26)).

�FE ¼ xA�Fð3Þ þ�Fð2Þ ð26Þ
Let us now consider the case of quaternary interactions (n¼ 3). Derivations

similar to those above lead to Eq. (27).

�FE ¼ x2
A

�
3JA

1 þ DB

�
þ xAxB

�
3
X2

k¼1

JA
k þ 3

X2

k¼1

JB
k

�
þ x2

B

�
DA þ 3JB

1

�
ð27Þ

Expressing �FE as a function of single variable (xA) one obtains (Eq. (28)).

�FE ¼ DA þ 3JB
1 þ xA 3

X2

k¼1

JA
k þ 3

X2

k¼1

JB
k � 2

�
DA þ 3JB

1

�" #

þ x2
A 3JA

1 þ DB � 3
X2

k¼1

JA
k � 3

X2

k¼1

JB
k þ 3JA

1 þ DB

" #
ð28Þ

In this case we have two independent spacings between sublevels in a quartet:
J

AðBÞ
1 and J

AðBÞ
2 (J

AðBÞ
3 ¼ DAðBÞ � J

AðBÞ
1 � J

AðBÞ
2 ). Therefore many-body interac-

tions are characterised by two asymmetries (Eq. (29)).

�
AðBÞ
1 ¼ 3J

AðBÞ
1 � DAðBÞ; �

AðBÞ
2 ¼ 3J

AðBÞ
2 � DAðBÞ ð29Þ

The equation for free energy (Eq. (18)) can be written for n¼ 3 in terms of these
asymmetries as Eq. (30).

F ¼ xAF
A
AAA þ xBF

B
BBB þ xAxB

�
xAxB

�
�A

2 þ�B
2

�
þ�A

1 xA þ�B
1 xB þ DA þ DB

�
þ NkTðxA ln xA þ xB ln xBÞ ð30Þ
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The term xA
2xB

2ð�A
2 þ�B

2 Þ can be considered as arising from quaternary
interactions; the term xAxBðxA�

A
1 þ xB�

B
1 Þ, apparently reflects the effect of triple

interactions. Note that �A
2 and �B

2 appear (similarly to DA and DB) as a sum that
can be considered as the excess free energy of the fourth order �F(4)¼�A

2 þ�A
2 .

When �A
2 ¼ 0 and �B

2 ¼ 0 or when �A
2 ¼��B

2 Eq. (30) becomes formally iden-
tical to Eq. (24b) of the model of triple interactions (Eq. (31)).

F ¼ xAF
A
A3

þ xBF
B
B3
þ xAxB

�
�A

1 xA þ�B
1 xB þDA þDB

�
þNkTðxA ln xA þ xB ln xBÞ

ð31Þ
The condition �A

2 ¼ 0 and �B
2 ¼ 0 means that central splittings of in both

quartets exactly equal one third of corresponding main splittings. Physical signifi-
cances of parameters �

AðBÞ
1 in Eqs. (31) and (24b) are different: in the first instance

�
AðBÞ
1 is the deviation of the lower spacing in a quartet from 1=3DA(B), whereas in

the second it reflects the deviation of the lower spacing in a triplet from 1=2DA(B).
A general rule applies to both Eqs. (24b) and (31): when all spacings are

exactly (1=n)DA(B) the excess free energy becomes composition independent and
apparently reflects the effect of binary interactions. This case corresponds to
additivity of the effects of surroundings. Again the principle of compensation
(�A

2 ¼ ��B
2 , �A

1 ¼ �B
1 ) seems to work in both cases.

Much more complicated equations evolve for the case n¼ 4 (interactions of the
fifth order leading to the splitting of free energy levels into quintets, Eq. (32)) in
which, �F(5), �F(4), �F(3), and �F(2) are given by Eqs. (32a) and (32b).

F ¼ xAF
A
A4

þ xBF
B
B4

þ NkTðxA ln xA þ xB ln xBÞ
þ xAxBfxAxB½xA�Fð5Þ þ�Fð4Þ� þ xA�Fð3Þ þ�Fð2Þg ð32Þ

�Fð5Þ ¼ �B
3 ��A

3 þ�A
2 ��A

1 ��B
2 þ�B

1

2
;

�Fð4Þ ¼ �A
3 þ ð�B

2 ��B
1 Þ

2
þ�A

2 þ�B
2 ð32aÞ

�Fð3Þ ¼ �A
1 ��B

1 ; �Fð2Þ ¼ �B
1 þ DA þ DB; �

AðBÞ
k ¼ 4J

AðBÞ
k � DAðBÞ

ð32bÞ
The independence of the term in square brackets of xA (a formal reduction to the
model of quaternary interactions) can be achieved when all differences �B

i ��A
i

are zero (Eq. (33)).

2
�
�B

3 ��A
3

�
þ
�
�A

2 ��B
2

�
þ
�
�B

1 ��A
1

�
¼ 0 ð33Þ

This condition involves all asymmetries in both quintets, i.e. individual asym-
metries cease to reflect the effects of many-body interactions of a given order.
Therefore higher order interactions can be more conveniently characterised by
considering excess free energies �F(i) in Eq. (32) as formal coefficients. Appar-
ently the latter are not independent random values. However, they can be used as
adjustable parameters in regression of experimental data, inter alia in order to
establish their relationship.
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Effects of Many-body Interactions on the Shape of Transition Curves

Extending the above approach to cases of higher order interactions and assuming
excess entropies to be zero, the equation for free energy (Eq. (18)) can be written
for n¼ 7 as Eq. (34).

F¼ xAF
A
A6
þxBF

B
B6
þNkT

�
xA lnxAþxB lnxB

�
þxAxB

	
xAxB

�
xAxB

�
xA�Eð7Þ þ�Eð6Þ�

þxA�Eð5Þ þ�Eð4Þ�þxA�Eð3Þ þ�Eð2Þ
 ð34Þ

This equation can be conveniently employed in simulations and regression of
experimental data.

Let us consider the case of positive excess energies (Fig. 5). Large positive excess
energies �E(i) bring about abrupt spin crossover but only insignificantly (and those
of odd orders alone) shift the transition temperature. Relative sensitivity of the shape
of transition curves towards the excess energy rapidly decays with increasing order
of interaction: an abrupt spin crossover can be achieved at �E(2)� 3 kJ=mol but it
requires a large �E(4)� 7 kJ=mol. This fact is in agreement with a generally recog-
nized major role of binary interactions. Interactions of higher orders may affect
minor features of transitions, for example triple interactions slightly shift the transi-
tion temperature and make transition curves asymmetric (Fig. 5b).

The abrupt spin crossover caused by triple interactions (Fig. 5b) is incomplete
in its high temperature limit. Higher order interactions (n� 3) make the abrupt
transition incomplete in both high and low temperature limits. The range of com-
positions corresponding to the ‘switch’ becomes smaller with increasing order of
molecular interactions. These features can be employed in the parameterisation of
experimental one-step transition curves.

A complicated nature of a one-step transition curve may proceed from a dis-
tribution of domains characterised by different �E0 and=or �EE. However it can
also originate from many-body interactions. The latter apparently play different roles
in lattices of different dimensionalities: in 1D systems one should expect the com-
bination of binary and triple interactions to be sufficient for an adequate description.
Higher dimensionality would require higher number of non-ideality terms.

Transition curves of spin crossover in a series of polymeric one-dimensional
complexes [Fe(fatrz)3](An)2mH2O, fatrz¼ 4-(formylamino)-1,2,4-triazole [29], can

Fig. 5. Changes in the shape of transition curves of spin crossover (�E0¼ 10 kJ=mol; �S0¼
64.5 Jmol�1 K�1) caused by the variation of excess energies of different orders
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be accordingly separated into two groups involving those of (i) compounds 1 and 3
and (ii) compounds 2 and 4 (see Table 2). In the first instance (1, 3) the regression
error gradually decreases with the number of non-ideality terms employed (Fig. 6A)
seemingly following a trivial rule: ‘‘the more terms the better is the fit’’. Such a
situation is expected for 3D structures in which 4- and higher order interactions
play a significant role.

Fig. 6. The regression error of the parameterisation of spin crossover curves in [Fe(fatrz)3]

(An)2mH2O (data from Ref. [29]) as a function of the number of employed non-ideality terms

(see Table 3)

Table 2. Estimates of parameters of Eq. (34) describing experimental data on spin crossover in [Fe(fatrz)3](An)2mH2O (data

from Ref. [29]); 1: An¼ trifluoromethanesulfonate, m¼ 3; 2: An ¼ BF�
4 , m¼ 2; 3: An¼ p-tolylsulfonate, m¼ 3; 4: An ¼ NO�

3 ,

m¼ 1; standard energy of spin crossover was fixed at the level �E0¼ 17.2 kJ=mol according to the calorimetric data [29];

T1=2 ¼ �E0=�S0

�yx�100 T1=2

K

�Eð2Þ

kJ=mol

�Eð3Þ

kJ=mol

�Eð4Þ

kJ=mol

�Eð5Þ

kJ=mol

[Fe(fatrz)3](trifl)23H2O (1) 4.5 275.9 � 0.4 4.71 � 0.03

2.9 274.6 � 0.3 4.68 � 0.06 �0.30 � 0.02

2.2 275.0 � 0.2 5.21 � 0.07 �0.13 � 0.03 �1.55 � 0.23

2.2 275.0 � 0.5 5.13 � 0.10 �0.11 � 0.28 �1.33 � 0.36 �0.10 � 1.09

[Fe(fatrz)3](BF4)22H2O (2) 4.0 283.5 � 0.7 4.15 � 0.11

1.4 279.3 � 0.2 5.00 � 0.05 �1.81 � 0.07

1.5 279.4 � 0.2 5.03 � 0.18 �1.78 � 0.07 �0.05 � 0.51

1.5 279.8 � 0.3 5.05 � 0.19 �1.66 � 0.06 �0.001 � 0.53 �0.3 � 1.45

[Fe(fatrz)3](p-tol)23H2O (3) 2.3 326.7 � 0.5 4.83 � 0.07

2.0 328.2 � 0.6 4.60 � 0.08 0.48 � 0.10

1.2 327.8 � 0.4 5.54 � 0.23 0.43 � 0.09 �2.52 � 0.66

1.1 329.1 � 0.7 4.96 � 0.44 1.43 � 0.46 �0.69 � 1.57 �3.25 � 1.8

[Fe(fatrz)3](NO3)2H2O (4) 2.1 324.4 � 0.4 4.93 � 0.05

0.8 326.3 � 0.2 4.62 � 0.02 0.71 � 0.02

0.8 326.2 � 0.2 4.70 � 0.07 0.70 � 0.03 �0.20 � 0.21

0.9 325.3 � 0.5 5.13 � 0.34 0.13 � 0.44 �1.41 � 1.27 1.59 � 1.76
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In the case of 2 and 4 the regression error sharply falls down at n¼ 2 (triple
interaction) and remains constant at larger numbers of non-ideality terms involved
(Fig. 6B) in contradiction to the above-mentioned rule. Taking into account only
binary and triple interactions is apparently sufficient for the description of the
transition curves. Such a situation is expected for 1D structures or systems of
non-interacting chains. The fact that spin crossover in similar chain-like molecules
(1, 3) requires higher order terms manifests strong inter-chain interactions.

Examples discussed above show the versatility of Eq. (34) in the analysis of
one-step transition curves. An alternative representation (Eq. (35)) of non-ideality
terms as a formal expansion of free energies over the powers of xA (or xB) is not so
convenient: it yields a different pattern of the effects of non-ideality parameters
(coefficients Ai) on the shape of transition curves.

F ¼ FB
B6

� xAðFB
B6

� FA
A6
Þ � A2x

2
A � A3x

3
A � A4x

4
A � A5x

5
A � A6x

6
A � A7x

7
A

þ NkTðxA ln xA þ xB ln xBÞ ð35Þ
Non-ideality parameters in this equation (coefficients Ai) not only change the

slope of transition curve but also significantly shift the transition temperature
(Fig. 7). The shape of transition curve is strongly dependent on the values of higher
order coefficients: an abrupt spin crossover is achieved at either A2¼ 4.5 kJ=mol or
A4¼ 1.5 kJ=mol (compare Fig. 7A and 7C). This does not correspond to the estab-
lished major role of binary coefficients. Therefore such a representation is merely
a regression equation the coefficient of which are only indirectly related to param-
eters of binary interactions.

Effects of negative excess energies cannot be correctly analysed using Eqs. (18)
and (34) because these equations do not take into account the phenomenon of
ordering. Up to now this phenomenon has been accounted for within the model
of binary and triple interactions alone (see Introduction and Refs. [25–28]). Small
negative excess energies of the second order merely decrease the slope of transition
curves without causing any critical phenomena. When �EE¼DAþDB is a large
negative (j�EEj � 2RT1=2) the ordering can occur leading to a plateau in the transi-
tion curve. Detailed explanations of these phenomena in relation to spin crossover

Fig. 7. Changes in the shape of transition curve of spin crossover (�E0¼ 10 kJ=mol;

�S0¼ 64.5 Jmol�1 K�1) caused by the variation of coefficients in Ref. (35)
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can be found in Refs. [25, 28]. A formalism taking into account higher order
interactions and ordering can be developed but this problem is out of scope of
the present paper. Below we shall explain some special cases arising within the
model of triple interactions.

It has been supposed [25–28] that negative �EE¼DAþDB, stabilising HS-LS
pairs is a necessary requirement for ordering whereas positive asymmetries provide
for the sharpness of transitions. It can however be shown that ordering and the two-
step spin crossover are controlled by the difference �A(B)�DA�DB. Let us con-
sider the evolution of ordering at xHS¼ 1=2 in a system with binary and triple
interactions. The conditions of thermodynamic equilibrium with respect to the
composition and the degree of order s (@F=@xHS¼ 0, @F=@s¼ 0) derived in Ref.
[25] can be written in terms of �EE¼DAþDB, �A

1 , and �B
1 as shown by Eqs. (36)

and (37).

T ¼

�E0 � 3x2
Að1 � s2Þð�B

1 ��A
1 Þ þ 2xA½�EE þ 2�B

1

��A
1 � s2ð�EE ��A

1 Þ� ��EE ��B
1

�S0 þ R
2

�
ðsþ 1Þ ln

ð1 þ sÞxA

1 � ð1 þ sÞxA

þ ð1 � sÞ ln
ð1 � sÞxA

1 � ð1 � sÞxA

� ð36Þ

T ¼ 4sxA½ð�B
1 ��A

1 ÞxA ��EE þ�A
1 �

R ln
ð1 þ sÞxAð1 � ð1 � sÞxAÞ
ð1 � sÞxAð1 � ð1 þ sÞxAÞ

ð37Þ

At x ¼ 1
2

they become as shown by Eq. (38).

T ¼
�E0 � 3

4
ð1 � s2Þð�B

1 ��A
1 Þ þ�B

1 ��A
1 � s2ð�EE ��A

1 Þ

�S0 þ R ln
1 þ s

1 � s

¼
s

�
�B

1 þ�A
1

2
��EE

�

R ln
1 þ s

1 � s

ð38Þ

For a special case �A
1 ¼ �B

1 (i.e. formal absence of the effects of triple inter-
actions) this equation is significantly simplified (Eq. (39)) leading to Eq. (40).

T ¼ �E0 � s2ð�EE ��A
1 Þ

�S0 þ R ln
1 þ s

1 � s

¼ sð�A
1 ��EEÞ

R ln
1 þ s

1 � s

ð39Þ

�A
1 ��EE ¼ R

�E0

�S0

1

s
ln

1 þ s

1 � s
¼ RT1=2

1

s
ln

1 þ s

1 � s
ð40Þ

A direct calculation according to Eq. (40) in the critical point of ordering s¼ 0
yields an indefinite ratio �A

1 � DA � DB ¼ 0=0, that can be resolved using the
L’Hospital rule. The derivative of ln[(1þ s)=(1� s)] at s¼ 0 equals 2, therefore
we obtain Eq. (41).

�A
1 ��EE ¼ 2RT1=2 ð41Þ
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Ordering thus occurs when �A
1 � DA � DB>2RT1=2, i.e. at either larger nega-

tive �EE or at large positive �A
1 ¼ �B

1 . Figure 8 shows simulated transition
curves obtained as solutions of Eqs. (36) and (37) for varying �A

1 ¼ �B
1 at

�EE¼ 0. Negative asymmetries merely decrease the slope of transition curves
(curve 1, Fig. 8). Positive asymmetries increase the slope, however at large values
they yield not an abrupt spin crossover but a specific two-step spin crossover with
sharp steps and peaks of the degree of order (curve 5, Fig. 8).

The formalism described above allows one to parameterise the effects of many-
body molecular interactions of an arbitrary order on the shape of transition curves
of spin crossover in the solid state. This formalism is based on a model considering
the effects of n nearest neighbours on the partition function of central molecule.
Such interactions split free energy levels of molecules into multiplets of the order
nþ 1. Non-ideality is characterised by main splittings of free energy levels (DA,
DB) and asymmetries ð�A

i ,�B
i Þ, the latter reflecting deviations from an equidistant

pattern. In the approximations of binary, triple, and quaternary interactions indivi-
dual asymmetries characterise many-body interactions of the corresponding orders.
They can therefore be advantageously used in regression of transition curves yield-
ing estimates of parameters having physical significance. However in the models
taking into account higher order interactions (n>3) individual asymmetries cease
to represent many-body interactions of a given order. In such cases it is more to the
purpose to employ formal excess energies �E(i).

Positive excess energies increase the slope of transition curves leading to the
abrupt spin crossover and hysteresis. Excess energies of quaternary and higher
order interactions cause an abrupt spin crossover in a narrow range of composi-
tions: such sharp transitions are incomplete at both high and low temperatures. The
excess energy of triple interactions yields asymmetric transition curves with
slightly shifted transition temperatures.

Regression of experimental data allows one to estimate excess energies of up to
the fifth order. The behaviour of the regression error with increasing number of
non-ideality terms in the equation for free energy yields information on the anisot-
ropy of molecular interactions.

Fig. 8. Effects of increasing asymmetries in a model system with zero excess energy of the second

order (�E0¼ 14 kJ=mol, T1=2¼ 155.5 K, �EE¼DAþDB¼ 0) and varying �A
1 ¼ �B

1 ¼ 0ð1Þ, þ2.5

(2) and þ3.5 (3) kJ=mol; dashed line represents the degree of order
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Effects of negative excess energies (requiring the introduction of the degree
of order) have been explored for the model of binary and triple interactions alone.
A special case of a partial compensation of the effects of triple interactions has
been explored and proven to yield a description of the two-step spin crossover
in [Fe(2-pic)3]Cl2EtOH similar to that given by the model of the Ising-like
Hamiltonian. It has also been shown that ordering can occur not only at negative
excess energies but at the combinations of zero �EE and large positive asymmetries.

Although the approximation of triple interactions provided for a rational param-
eterisation of a wide variety of two-step transition curves [25, 26] it has been found
that higher order many-body interactions affect the shape of the one-step transition
curve. Therefore a combination of higher order interaction and effects of ordering
might be useful in the description of especially ‘‘difficult’’ two-step transition
curves.

Methods

Simulation of transition curves and parameterisation of experimental data have
been achieved according to the described above equations employing a multipur-
pose non-linear regression program OPTIMI supplied with the monograph Ref. [30].
Methods of solving equations of the law of mass action with temperature as the
independent variable have been described in Ref. [26].
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